[IUCr Home Page] [CIF Home Page]

Index

Symmetry dictionary (symCIF) version 1.0.1

_space_group.name_Schoenflies

Name:
'_space_group.name_Schoenflies'

Definition:

   The Schoenflies symbol as listed in International Tables for
   Crystallography Volume A denoting the proper affine class (i.e.
   orientation-preserving affine class) of space groups
   (space-group type) to which the space group belongs. This
   symbol defines the space-group type independently of the
   coordinate system in which the space group is expressed.

   The symbol is given with a period, '.', separating the
   Schoenflies point group and the superscript.

   Ref: International Tables for Crystallography (2002). Volume A,
        Space-group symmetry, edited by Th. Hahn, 5th ed.
        Dordrecht: Kluwer Academic Publishers.

Example:

C2h.5 Schoenflies symbol for space group No. 14

Type: char

Mandatory item: no


The data value must be one of the following:


C1.1

Ci.1

C2.1

C2.2

C2.3

Cs.1

Cs.2

Cs.3

Cs.4

C2h.1

C2h.2

C2h.3

C2h.4

C2h.5

C2h.6

D2.1

D2.2

D2.3

D2.4

D2.5

D2.6

D2.7

D2.8

D2.9

C2v.1

C2v.2

C2v.3

C2v.4

C2v.5

C2v.6

C2v.7

C2v.8

C2v.9

C2v.10

C2v.11

C2v.12

C2v.13

C2v.14

C2v.15

C2v.16

C2v.17

C2v.18

C2v.19

C2v.20

C2v.21

C2v.22

D2h.1

D2h.2

D2h.3

D2h.4

D2h.5

D2h.6

D2h.7

D2h.8

D2h.9

D2h.10

D2h.11

D2h.12

D2h.13

D2h.14

D2h.15

D2h.16

D2h.17

D2h.18

D2h.19

D2h.20

D2h.21

D2h.22

D2h.23

D2h.24

D2h.25

D2h.26

D2h.27

D2h.28

C4.1

C4.2

C4.3

C4.4

C4.5

C4.6

S4.1

S4.2

C4h.1

C4h.2

C4h.3

C4h.4

C4h.5

C4h.6

D4.1

D4.2

D4.3

D4.4

D4.5

D4.6

D4.7

D4.8

D4.9

D4.10

C4v.1

C4v.2

C4v.3

C4v.4

C4v.5

C4v.6

C4v.7

C4v.8

C4v.9

C4v.10

C4v.11

C4v.12

D2d.1

D2d.2

D2d.3

D2d.4

D2d.5

D2d.6

D2d.7

D2d.8

D2d.9

D2d.10

D2d.11

D2d.12

D4h.1

D4h.2

D4h.3

D4h.4

D4h.5

D4h.6

D4h.7

D4h.8

D4h.9

D4h.10

D4h.11

D4h.12

D4h.13

D4h.14

D4h.15

D4h.16

D4h.17

D4h.18

D4h.19

D4h.20

C3.1

C3.2

C3.3

C3.4

C3i.1

C3i.2

D3.1

D3.2

D3.3

D3.4

D3.5

D3.6

D3.7

C3v.1

C3v.2

C3v.3

C3v.4

C3v.5

C3v.6

D3d.1

D3d.2

D3d.3

D3d.4

D3d.5

D3d.6

C6.1

C6.2

C6.3

C6.4

C6.5

C6.6

C3h.1

C6h.1

C6h.2

D6.1

D6.2

D6.3

D6.4

D6.5

D6.6

C6v.1

C6v.2

C6v.3

C6v.4

D3h.1

D3h.2

D3h.3

D3h.4

D6h.1

D6h.2

D6h.3

D6h.4

T.1

T.2

T.3

T.4

T.5

Th.1

Th.2

Th.3

Th.4

Th.5

Th.6

Th.7

O.1

O.2

O.3

O.4

O.5

O.6

O.7

O.8

Td.1

Td.2

Td.3

Td.4

Td.5

Td.6

Oh.1

Oh.2

Oh.3

Oh.4

Oh.5

Oh.6

Oh.7

Oh.8

Oh.9

Oh.10

Category: space_group