[IUCr Home Page] [Commission Home Page]
next up previous
Next: Forces Up: (IUCr) Crystal Packing Previous: Introduction

Thermodynamics and kinetics

Now put yourself in the place of a molecule within a pure and perfect crystal, being heated by an external source. At some sharply defined temperature, a bell rings, you must leave your neighbours, and the complicated architecture of the crystal collapses to that of a liquid. Textbook thermodynamics says that melting occurs because the entropy gain in your system by spatial randomization of the molecules has overcome the enthalpy loss due to breaking the crystal packing forces:

T[S(liquid) - S(solid)] \(>\) H(liquid) - H(solid)

G(liquid) \(<\) G(solid)

This rule suffers no exceptions when the temperature is rising. By the same token, on cooling the melt, at the very same temperature the bell should ring again, and molecules should click back into the very same crystalline form. The entropy decrease due to the ordering of molecules within the system is overcompensated by the thermal randomization of the surroundings, due to the release of the heat of fusion; the entropy of the universe increases.

But liquids that behave in this way on cooling are the exception rather than the rule; in spite of the second principle of thermodynamics, crystallization usually occurs at lower temperatures (supercooling). This can only mean that a crystal is more easily destroyed than it is formed. Similarly, it is usually much easier to dissolve a perfect crystal in a solvent than to grow again a good crystal from the resulting solution. The nucleation and growth of a crystal are under kinetic, rather than thermodynamic, control.


next up previous
Next: Forces Up: (IUCr) Crystal Packing Previous: Introduction

Copyright © 2005 International Union of Crystallography

IUCr Webmaster